Lecture 12— Green's Functions

In lecture 10, we have briefly discussed how the Laplace equation generally has no solution, due to the fact one requires to prescribe Cauchy data u and $\partial_{\nu}u$ on $\partial\Omega$ simultaneously. This is of-course for the Cauchy problem. Now recall the generalized Green formula, where for any $u, \phi \in C^2(\Omega) \cap C^1(\overline{\Omega})$ with $\Phi(x) = E(x - y) + \phi(x)$

$$u(y) = \int_{\Omega} (u\Delta\phi + \Phi_y\Delta u) + \int_{\partial\Omega} (u\partial_\nu\Phi_y - \Phi_y\partial_\nu u). \tag{1}$$

Consider

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$
 (2)

otherwise known as the Dirichlet problem, and suppose ϕ_y satisfies

$$\begin{cases} \Delta \phi_y = 0 & \in \Omega \\ \phi_y = -E_y & \in \partial \Omega \end{cases}$$
 (3)

we notice that term $\int_{\partial\Omega} \Phi_y \partial_\nu u$ in expression (1) vanishes since $\phi_y = -E_y$ on the boundary, hence $\partial_\nu u$ drops out from the expression which allows for the existence of a solution since we may now prescribe Cauchy data u alone on the boundary.

Definition 1. We call a fundamental solution G(x,y) with pole y a Green's function for the Dirichlet problem for the Laplace equation in the domain Ω if,

$$G_u(x) \equiv G(x,y) := E(x-y) + \phi_u(x)$$

for $x \in \overline{\Omega}$, $y \in \Omega$, $x \neq y$ where $\phi_y(x)$ satisfies (3).

The solution for this (Dirichlet) problem is

$$u(y) = \int_{\Omega} G_y f + \int_{\partial \Omega} u \partial_{\nu} G_y \tag{4}$$

where $G_y(x)$ is a Green's Function for Ω .

One may think of this in the following manner. Suppose you want to construct a Green's function with property

$$\begin{cases} \Delta G = \delta & in \ \Omega \\ G = 0 & on \ \partial \Omega \end{cases}$$

It can be considered that this point as a point charge where one wants to solve for the potential field generated by it, in the free space case it would be E_y where our charge is located at y. Suppose now we want a solution to exhibit a potential distribution prescribed by g on a non-characteristic surface denoted $\partial\Omega$. It would be required to cancel the effect of the E_y on $\partial\Omega$ meanwhile remain the same elsewhere. This can be done by introducing an opposite charge to charge y such that the resultant

Class notes by Ibrahim Al Balushi

distribution will cancel the effects on $\partial\Omega$. An example if $\partial\Omega$ is a plane, so we take the reflection of y with respect to plane $\partial\Omega$.

Does (4) solve (2) ?

Yes, for nice domains $g \in C(\partial\Omega)$, $f \in C^{0,\alpha}(\Omega)$.

f = 0 case:

$$\Delta u = 0 \in \Omega$$

$$u(x) \to g(z) \ as \ \Omega \ni x \to z \in \partial \Omega$$

Simple Observations

$$\frac{\partial G(x,y)}{\partial \nu(x)} = \frac{\partial [E(x-y) + \phi_y(x)]}{\partial \nu(x)} = \frac{\partial [E(x-y) + \phi_x(y)]}{\partial \nu(x)}$$

(nontrivial to prove this symmetry).

$$G(x,y) = G(y,x)$$
 $G ext{ is unique if it exists}$
 $G \leq 0$
 $G(x,y) \geq E(x-y)$

Poisson Formula

Suppose we would like to solve the Dirichlet problem on a ball of radius R centred at the origin. We require to formulate a Greens function on the ball:

$$\Omega = B(0, R) = \{x: \ |x| < R\}$$

Take a point $y \in B_R$ and find the inverse with respect to the sphere. Simple analytical geometry reveals that the reflection y^* is

$$y^* = \frac{R^2}{|y|^2} y.$$

The boundary of Ω is in fact a sphere hence the set of all points on $\partial\Omega$ have a constant ratio between the distances to x from each of the points y and y^* ; in particular if we define |x-y|=r and $|x-y^*|=r_*$ then for all $x\in\partial\Omega$ (x's on the sphere),

$$const = \frac{r_*^2}{r^2} = \frac{|x - \frac{R^2}{|y|^2}y|^2}{R^2 + |y|^2}$$
 (5)

$$= \frac{|x|^2 + \frac{R^2}{|y|^2}}{R^2 + |y|^2} = \frac{R^2}{|y|^2} \frac{(|y|^2 + R^2)}{(R^2 + |y|^2)} = \frac{R^2}{|y|^2}.$$
 (6)

Using the fundamental solution E_y , we have

$$E_y = \frac{1}{(2-n)|S^{n-1}|r^{2-n}}, \quad E_{y^*} = \frac{1}{(2-n)|S^{n-1}|r_*^{2-n}} \quad n > 2,$$

we can relate E_y and E_{y^*} for $x \in \partial \Omega$

$$\frac{E_{y^*}}{E_y} = \frac{r_*^{2-n}}{r^{2-n}} \implies E_{y^*} = \left(\frac{R}{|y|}\right)^{n-2} E_y$$

hence the expression

$$G_y = E_y - \left(\frac{|y|}{R}\right)^{2-n} E_{y^*}$$

vanishes when $x \in \partial \Omega$ by the relation above. Clearly, if we take $\phi_y = -\left(\frac{|y|}{R}\right)^{2-n} E_{y^*}$, the conditions in definition 1 hold hence G_y here is a Green function. Now suppose $u \in C^2(\overline{\Omega})$ and harmonic we have by the general Green's formula

$$u(y) = \int_{\Omega} \underbrace{(u\Delta E_{y^*} + G_y \Delta u)}_{=0} + \int_{\partial \Omega} (u\partial_{\nu} G_y - \underbrace{G_y \partial_{\nu} u}_{G_{\nu}|_{\partial \Omega} = 0}).$$

hence our solution

$$u(y) = \int_{\partial\Omega} u \partial_{\nu} G_y$$

where $\partial_{\nu}G(x,y)=\frac{R^2-|y|^2}{R|S^{n-1}||x-y|^n},$ better known as the Poisson kernel

$$\implies u(y) = \frac{R^2 - |y|^2}{R|S^{n-1}|} \int_{|x| = R} \frac{u(x)}{|x - y|^n} dS_x, \quad \forall y \in B_R$$

otherwise known as the Poisson Integral formula.

Using the same physical analogy with respect to potential fields above, the unit charge at y is Q then

$$Q^* = -\left(\frac{R}{|y|}\right)^{n-2}Q$$

hence $G(x,y) = \frac{c_n}{|x-y|^{n-2}} - \frac{c_n R^{n-2}}{|y|^{n-2}|x - \frac{R^2}{|y|^2}y^{n-2}}$

$$\partial_{\nu}G(x,y) = \frac{R^2 - |y|^2}{R|S^{n-1}||x-y|^n}$$

so

$$u(y) = \frac{R^2 - |y|^2}{R|S^{n-1}|} \int\limits_{\partial B_R} \frac{g(x)}{|x - y|^n} d^{n-1}x = \int\limits_{\partial B_R} \pi(x, y) g(x) d^{n-1}x$$

with $\Delta u = 0$ in B_R . Take $z \in \partial B_R$

$$\pi(y,x) \ge 0, \quad \pi(zt,x) \quad take \ t \to 1$$

$$\int_{\partial B_R} \pi(y, x) d^{n-1} x = 1$$

$$\forall \delta > 0, \ \exists t^* \in (0,1) \ s.t \ \pi(zt,x) \le \delta \ for \ \|x - z\|_2 \ge \delta, \ t > t^*.$$

Alternative pf of Koebe's Converse

Suppose $u \in C(\Omega)$ satisfies MVP in Ω . Take an arbitrary ball centred at $y \in \Omega$ with $\overline{B_R(y)} \subset \Omega$. Solve

$$\begin{cases} \Delta v = 0 \text{ in } B_R(y) \\ v = u \text{ on } \partial B_R(y) \end{cases}$$

w=u-v satisfies the MVP in $B_R(y)$ and w=0 on $\partial B_R(y)$

$$\implies w \equiv 0 \in B_R(y)$$

$$\implies u = v \qquad \Delta u = 0$$

.