Lecture 12— Green’s Functions

In lecture 10, we have briefly discussed how the Laplace equation generally has no solution, due to
the fact one requires to prescribe Cauchy data u and 9,u on 92 simultaneously. This is of-course for
the Cauchy problem. Now recall the generalized Green formula, where for any u, ¢ € C?(2) N C1(Q)
with ®(z) = E(z —y) + ¢(x)

u(y) = /(quﬁ + &, Au) + /(u&,tl)y - ®,0,u). (1)
Q o0
Consider
Au=f inQ
_ (2)
u=g on 0N
otherwise known as the Dirichlet problem, and suppose ¢, satisfies
Agp, =0 e
v (3)
¢y =—E, €00
we notice that term |, a0 PyO,u in expression (1) vanishes since ¢, = —E, on the boundary, hence 9,u

drops out from the expression which allows for the existence of a solution since we may now prescribe
Cauchy data u alone on the boundary.

Definition 1. We call a fundamental solution G(x,y) with pole y a Green's function for the Dirichlet
problem for the Laplace equation in the domain ) if,

Gy(xr) = G(z,y) := E(x —y) + ¢y(2)
forz € Q, yeQ, x+#y where ¢, () satisfies (3).
The solution for this (Dirichlet) problem is
uy) = [ Gyt + [udnc, (4)
Q 0

where G (z) is a Green’s Function for Q.

One may think of this in the following manner.Suppose you want to construct a Green’s function
with property

AG=06 inQ
G=0 on 0f)

It can be considered that this point as a point charge where one wants to solve for the potential field
generated by it, in the free space case it would be E, where our charge is located at y. Suppose now
we want a solution to exhibit a potential distribution prescribed by g on a non-characteristic surface
denoted 0. It would be required to cancel the effect of the E, on 000 meanwhile remain the same
elsewhere. This can be done by introducing an opposite charge to charge y such that the resultant
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distribution will cancel the effects on 9€2. An example if 02 is a plane, so we take the reflection of y
with respect to plane 0f2.
Does (4) solve (2) ?

Yes, for nice domains g € C(992), f € C**(Q).

f=0case:
Au=0 €

u(z) = g(z) as 3z — z € 9N

Simple Observations
0G(z,y) _ OE(x—y)+ ¢y(x)] _ OE(@ —y) + ¢(y)]

ov(x) ov(x) ov(x)
(nontrivial to prove this symmetry).
G(z,y) = Gy, z)
G is unique if it exists
G<0
G(z,y) > E(r —y)

Poisson Formula

Suppose we would like to solve the Dirichlet problem on a ball of radius R centred at the origin. We
require to formulate a Greens function on the ball:

Q=B(0,R)={x: |z| < R}

Take a point y € Br and find the inverse with respect to the sphere. Simple analytical geometry

reveals that the reflection y* is
R2
Y=Y
lyl?

The boundary of 2 is in fact a sphere hence the set of all points on 92 have a constant ratio between
the distances to x from each of the points y and y*; in particular if we define |z —y| = r and |z —y*| = r.
then for all z € 9Q (2’s on the sphere),

r2 \x - \szy|2
p=le = WP 5
cons 2 R+ ]2 (5)
|lz|? + ind 2 2 2 2
B e B WP+ R R (©)
R2+yl2 [yl (R*+[y[?)  [yl?

Using the fundamental solution E,, we have

1 1

E - 5 E P—
PR T s

n> 2,

we can relate E, and E,- for z € 0Q



By i R\"?
E, r2n Y (|y|) Y

y\* "
oyt (8),

2—n
vanishes when x € 9Q by the relation above. Clearly, if we take ¢, = — (%) E,-, the conditions

hence the expression

in definition 1 hold hence G, here is a Green function. Now suppose u € C?(Q) and harmonic we
have by the general Green’s formula

u(y) = /(uAEy* + GyAu) + /(u&,Gy - Gyou).
——
Q =0 o Gyloa=0
hence our solution
u(y) = /u&,Gy
o0

2 2
where 0,G(x,y) = mf%m, better known as the Poisson kernel

R? — Jy? u(x)
= = dS,, B
U(y) R|S7l_1| / |.'L' — y|n S Vy € bR

jal=

otherwise known as the Poisson Integral formula.

Using the same physical analogy with respect to potential fields above, the unit charge at y is @
then

R n—2
0 — — () Q
[l
h G = En -2 Can72
ence (;(}’y) [z—y|n—2 ‘y‘n72|x_\§|22y|n72
R? — Jy?
0,G(x,Y) = e T
v ( y) R|Sn—1||z_y‘"
SO

R”%MQ/ 9(z) 1 / 1
u(y) = d""x = w(x, )d" " tx
(y) RIS ] P (z,y)9(x)

BBR aBR
with Au =0 in Bg. Take z € 0Bpg

w(y,z) >0, w(zt,x) taket—1

/ m(y,z)d" 'z =1

dBr
V8 >0, 3" € (0,1) s.t w(zt,x) <0 for ||z —z||2 >3, t >t".



Alternative pf of Koebe’s Converse

Suppose u € C(Q) satisfies MVP in Q. Take an arbitrary ball centred at y € Q with Bgr(y) C Q.
Solve

Av =0in Bgr(y)
v =1u on OBRr(y)
(

w = u — v satisfies the MVP in Br(y) and w = 0 on 0Bg(y)
= w=0¢€ Br(y)

— u=v Au=0



